
Interactive Visual Clustering

Marie desJardins
James MacGlashan
MAPLE Laboratory

Department of CS&EE
1000 Hilltop Circle

Baltimore, MD 21250 USA
+1-410-455-3967

{mariedj, jmac1}@umbc.edu

Julia Ferraioli
Bryn Mawr College

101 North Merion Ave.
Bryn Mawr, PA 19010

+1-610-526-5358
jferraio@brynmawr.edu

ABSTRACT
Interactive Visual Clustering (IVC) is a novel method that al-
lows a user to explore relational data sets interactively, in or-
der to produce a clustering that satisfies their objectives. IVC
combines spring-embedded graph layout techniques with user
interaction and constrained clustering. This paper describes
the IVC method, and gives experimental results on several
synthetic and real-world data sets, showing that IVC yields
better clustering performance than several alternative meth-
ods.

ACM Classification: I2.6 [Artificial Intelligence]: Learn-
ing. H5.2 [Information interfaces and presentation]: Graphi-
cal user interfaces.

General terms: Algorithms, Experimentation.

Keywords: Clustering, constraints, interaction, machine
learning.

MOTIVATION
The goal of this research is to develop interactive clustering
methods, which allow a user to partition a data set into clus-
ters that are appropriate for their tasks and interests. The goal
of traditional automated clustering is to partition a data set
into clusters that have high intra-cluster similarity and low
inter-cluster similarity. In general, there will be a single best
clustering (or possibly several local maxima), which depend
on the similarity metric used for clustering, the particular ob-
jective function being optimized by the clustering algorithm,
and the search method.

In practice, however, the “best” clusters may also depend on
the user’s goals and interests. For example, when perform-
ing clustering in a collection of student data, an admissions
officer may be looking for patterns in student performance,
whereas a registrar might want to track enrollment patterns

for different course offerings. The appropriate clusters will
not be the same for these two users. An automated clustering
method might find one of these clusterings, but not both.

Recent work on constrained clustering addresses the issue
of discovering multiple target clusterings, using additional
knowledge provided by a user. Constrained clustering is
based on the insight that although users may not be able to
explicitly state the criteria for their desired clustering, they
can often provide partial knowledge about the nature of the
clusters. This additional information is typically given in the
form of pairwise constraints on cluster membership, which
are used to guide the system towards the desired solution.

Ideally, the user would provide a few initial constraints to
“seed” the clusters, then add constraints as necessary to ad-
just and improve the resulting clusters. The difficulty with
doing this in practice is that the clusters are not always easy
to understand, particularly in high-dimensional domains,
where the “shapes” of the clusters are also high-dimensional
and therefore difficult to visualize clearly.

In some domains, there may be other relational information
in addition to the pairwise constraints. This relational infor-
mation, which can be represented as edges in the data graph,
provides additional similarity information. However, these
relations are generally weaker than pairwise constraints: they
do not strictly imply shared cluster membership, although
they may indicate a higher cluster correlation between the
connected instances. Most clustering algorithms take into ac-
count either the attribute information on the data instances, or
the relational information between instances, but not both.1

Our goal is to allow a user to explore a large relational data
set interactively, in order to produce a clustering that satisfies
their objectives. We achieve this goal by combining spring-
embedded graph layout techniques with user interaction and
constrained clustering.

Specifically, we present a novel approach called Interactive
Visual Clustering (IVC). In this approach, the relational data
is initially displayed using a spring-embedded graph lay-

1Note that there has been some recent work on relational clustering [3, 24,
14, 19], including our own ongoing research in this area [1]. However, to
our knowledge, none of the existing work explicitly combines relational data
with pairwise constraints.

1

out. The user can then move groups of instances to different
places on the screen in order to form initial clusters. A con-
strained clustering algorithm is applied to generate clusters
that combine the attribute information with the constraints
implied by the instances that have been moved. These clus-
ters are then used to generate additional graph edges, which
are combined with the relational edges to produce a new lay-
out, in which instances are relocated closer to the clusters to
which they appear to belong. Based on the new layout, the
user can identify instances that are “misplaced” and move
these instances into the correct clusters.

We show experimentally, using several synthetic and real-
world data sets, that using IVC, we can converge to the target
clustering significantly more quickly than either manual ad-
justment, spring-embedded layout alone, or clustering alone.

BACKGROUND
Our work combines and extends standard force-directed graph
layouts and the PCK-Means constrained clustering method
introduced by Basu and Mooney [2].

Force-Directed Graph Layout
Force-directed layout methods are among the most popular
graph layout techniques [10]. We use a type of force-directed
layout called spring embedding [6], as implemented in the
Prefuse graph visualization system [17].

In spring embedding, nodes in a graph act on each other
with two kinds of simulated forces, modeled on physical pro-
cesses. The first force is a node repulsion force emitted from
each node, simulating an inverse gravitational force. The re-
pulsion force from a node exerts a “push” on every other node
in the graph, with a magnitude inversely proportional to the
square of the distance between the nodes. The second force
is an attractive spring force that “pulls” (or pushes, if the
nodes become too close) along the edges between the nodes.
Each edge is modeled as a spring with an ideal spring length,
and a spring constant (strength). The edge exerts a force on
the nodes at either end, with magnitude proportional to the
spring constant, and inversely proportional to the difference
between the ideal length and the current length. If the edge is
longer than the ideal length, the force is an attracting force;
if shorter than ideal, the force is a repulsing force.

The spring-embedded layout is determined iteratively, by
computing and summing all of the forces on each node, then
moving the nodes incrementally in the direction of the net
resulting force. This “settling” process is repeated until the
layout reaches an equilibrium. In the resulting layout, nodes
with edges between them tend to be situated near each other,
whereas nodes without edges between them tend to be spread
apart.

Constrained Clustering
Many different techniques for clustering exist, based on dif-
ferent models of the nature of the clusters to be discov-
ered [8]. Perhaps the most commonly used clustering tech-
nique is the K-means algorithm [13], which iteratively as-
signs points to the nearest cluster, then recomputes cluster
centroids, until a stable clustering is reached.

Recently, researchers in the machine learning community

have developed methods for constrained clustering, in which
users are able to provide additional information about the
nature of the clusters. This information typically consists
of pairwise constraints on individual data points, indicating
that those points should be in the same cluster (must-link
constraints), or should be in different clusters (cannot-link
constraints). The earliest constrained clustering work, by
Wagstaff et al., extended K-means by modifying the itera-
tive assignment step to select the nearest cluster that satisfies
the constraints.

Basu and Mooney [2] extended Wagstaff’s work to use a
generalized weighted penalty function. In their approach,
PCK-Means, if a cluster assignment determined by the K-
means method violates the assigned must-link or cannot-link
constraints, then a penalty is assigned to the overall solu-
tion. This penalty is incorporated into the K-means objective
function, so PCK-Means effectively searches for the cluster
assignment that maximizes cluster coherence while minimiz-
ing the penalty for constraint violations. To perform con-
strained clustering in IVC, we are using an implementation
of PCK-Means provided to us by the original authors as an
extension to the Weka learning toolkit [21].

APPROACH
Our visual clustering paradigm consists of the following steps:

1. Initializing the display. We currently use Prefuse’s spring-
embedded graph layout algorithm to produce the initial
display.

2. Interpreting user actions. As the user moves instances,
pairwise cluster membership constraints are generated.

3. Constrained clustering. After each instance is moved,
the new constraints are added to the constraint set, and a
constrained clustering algorithm (PCK-Means) is used to
produce a new clustering of the data.

4. Updating the display. Using the clusters produced, the
display is updated so that the new clusters are visually ap-
parent.

The following subsections describe our approach to Steps 2
and 4. We then discuss mechanisms for simulating user be-
havior for our experiments.

Interpreting User Actions
When the user moves an instance, it is “pinned” in place, and
is not affected by the spring-embedded layout. These pinned
instances do, however, exert forces on the other instances in
the graph.

The constrained clustering process begins after the user has
moved two instances. To generate the constraints, the screen
distance between each pair of moved instances is computed.
If the instances are at least δ units apart (where δ is a user-
adjustable parameter), they are considered to be in different
clusters, and a cannot-link constraint is added between them.
If they are less than ε units apart (where ε ≤ δ is another
user-adjustable parameter), then they are considered to be in
the same cluster, and a must-link constraint is added. If the

2

Figure 1: Initial display of the Overlapping Circles data set. The circled instances are the first two instances that will be
moved by the user.

screen distance is greater than ε but less than δ, then the situ-
ation is ambiguous, and no constraints are generated.2

PCK-Means is then run on the data, using all of the con-
straints generated thus far, and a new clustering is produced.
Note that the distance metric for PCK-Means is Euclidean
distance in the attribute space, not the screen distance used
to generate constraints.

Updating the Display
Once the new constraints have been generated, and a new
clustering produced, the display must be updated to reflect
the groupings inherent in the new clustering. Ideally, the re-
lational structure of the data should also be preserved. If
the relational structure is correlated with cluster membership,
then the graph edges and the cluster membership edges will
reinforce each other, leading to rapid convergence of the in-
teraction to the correct clusters.

To update the graph, we adapt an approach described by
Brockenauer and Cornelson [4] for visualizing clusters in
graphs. First, a new “dummy” node is generated to represent
the center of each cluster. This node is located at the center
of the instances that were moved into that cluster (i.e., the
transitive closure of a set of instances with must-link con-
straints between them). Next, a cluster edge is added be-
tween this cluster center and every instance assigned to that
cluster. The relational edges use Prefuse’s default spring con-
stant (2.0x10−5). Cluster edges are set to have a spring con-
stant equal to twice the default (4.0x10−5). As a result, the
2In our experiments, ε is set to 227 pixels, and δ is set to 450 pixels.

cluster edges have a more significant effect on the layout than
the relational edges, but do not completely dominate the lay-
out.

The spring-embedded layout is then invoked on the com-
bined graph (i.e., the graph with both the relational edges
from the original data set and the new cluster edges). The
resulting graph is displayed, but only the relational edges are
shown to the user, and the cluster center nodes are not drawn.
(It would be possible to also show the cluster edges, but this
makes the graph very cluttered and obscures the relational
edges.)

Simulating the User
We have not yet run formal experiments on human users. For
the experiments reported here, we simulate user behavior us-
ing one of two heuristics for instance selection: random and
farthest-first. The random instance method simply selects
a random instance to move at each step. The farthest-first
method selects the instance that is farthest (on the screen)
from its correct cluster. The intuition behind the latter heuris-
tic is that the user will be most likely to notice anomalous
instances — that is, the instances that appear farthest from
where they should be. For both node heuristics, we use pre-
defined locations (near the screen corners) for the cluster cen-
ters. Instances are moved to this location, with a small ran-
dom (x, y) offset.

In the experiments with force-directed layout but no cluster-
ing, after each instance is moved, the layout is allowed to
“settle” to an equilibrium before the next instance is moved.

3

Figure 2: Layout of the Overlapping Circles data set,
after the two instances shown in Figure 1 have been
moved. The circled instance will be moved next.

Figure 3: Layout of the Overlapping Circles data set
after three instances have been moved. The circled
instance will be moved next.

System Operation
A series of screenshots is shown in Figures 1 to 5. In this
sequence, a user is moving nodes to their target clusters.
Figure 1 shows the initial display of the synthetic Overlap-
ping Circles data set. The Overlapping Circles data set is
described in “Data Sets,” below. For purposes of illustrat-
ing the process, the colors of the nodes and numeric labels
indicate the “true” (target) cluster membership. In order to
simplify the displays for these small-scale screen captures,
the relational edges are not shown. Notice that nodes from
all of the clusters are interspersed in the display.

The circled nodes in Figure 1 are the first two nodes cho-
sen by the user. The resulting display is shown in Figure 2.
Here, the upper left and lower right clusters (where the first
two nodes were placed) are starting to become apparent. Fig-
ures 3 and 4 show the display after the third and fourth nodes
are moved. In Figure 4, all four clusters can be seen; how-
ever, there are still a number of “ambiguous” nodes in the
center of the display, which are not clearly associated with
any one cluster.

Figure 5 shows the display after 14 nodes have been moved.
At this point, as seen in the results in Figure 9, the Adjusted
Rand Index using IVC is around 0.9, meaning that most of
the instances are grouped correctly into their target clusters.

Figure 4: Screen display of the Overlapping Circles
data set after four instances have been moved.

Figure 5: Screen display of the Overlapping Circles
data set after 14 instances have been moved.

Visually, the clusters are very distinct, with only a few nodes
scattered between the clusters.

METHODOLOGY
We compared our Interactive Visual Clustering method to
several alternative approaches. The five approaches we tested
are shown in Table 1. “Layout?” indicates whether force-
directed layout is used. (If not, the layout only changes when
instances are explicitly moved by the user.) “Clustering?”
indicates whether constrained clustering is used. If so, each
time an instance is moved, a new clustering is computed, and
cluster edges are updated. If not, no cluster edges are used
in the layout. “Heuristic” indicates the instance movement
heuristic: either Farthest-First or Random.

Note that the fourth approach (Clustering Baseline) is equiv-
alent to simply doing standard constrained clustering with
random constraints, since the layout position is not taken into
account in selecting which instance to move.

We hypothesize that the farthest-first instance heuristic will
improve performance faster than moving random instances,
since each instance moved should provide the largest possi-
ble improvement in the clustering.

Clustering is expected to perform faster than without cluster-
ing because it results in an explicit model of the user’s target
clustering, incorporating the feedback provided by the must-

4

Approach Layout? Clustering? Heuristic
Manual Baseline No No Random
Layout Baseline Yes No Random
Layout + FF Yes No Farthest-First
Clustering Baseline Yes Yes Random
Interactive Visual Clustering Yes Yes Farthest-First

Table 1: The five approaches that we tested empirically.

link and cannot-link constraints.

Force-directed layout should perform better than manual lay-
out because of the relational edges in the data set. These
edges already tend to cluster the instances visually, because
they pull together instances that are related to each other.
Therefore, when an incorrect instance is moved to its tar-
get cluster, it should also pull similar instances towards that
cluster, resulting in the possibility of multiple instances being
moved to the correct group. Furthermore, the cluster edges
exert an even stronger influence (because their spring con-
stant is higher), so as the clustering algorithm receives more
constraints, the layout increasingly reflects the learned clus-
tering. Therefore, the farthest-first heuristic primarily utilizes
the relational knowledge from the data set when there are few
constraints (few instances moved), but primarily utilizes the
clustering structure when there are many constraints (many
constraints). As a result, the interaction shifts from creating
an initial clustering towards repairing the learned clustering
over time.

Note that the IVC paradigm relies on an assumption that the
relational edges are correlated with the cluster membership
of the instances. If there is no such correlation, then these
edges may not be helpful, or could even hinder performance.

To measure the performance of the alternative approaches,
we use the Adjusted Rand Index (ARI) [7]. The ARI is used
to evaluate how close a given clustering is to the “correct” or
target clustering. The Rand Index [18] measures the propor-
tion of clustering matches. (A “match” is a pair of instances
that are either grouped together in both the learned and the
target clustering, or grouped separately in both the learned
and the target clustering.) Using Ci to indicate the cluster
labeling of instance i in the target clustering and C′i to indi-
cate i’s cluster labeling in the learned clustering, we indicate
the number of same-cluster matches as

Msame = |{i, j : ((Ci = Cj) ∧ (C′i = C′j))}|

and the number of different-cluster matches as

Mdiff = |{i, j : (Ci 6= Cj) ∧ (C′i 6= C′j))}|.

Then the Rand Index is given by:

RI =
matches

pairs

=
Msame + Mdiff

(

n
2

)

The Rand Index penalizes partitions with more clusters, so
the Adjusted Rand Index is often used instead. The ARI nor-
malizes the Rand Index to adjust for the number of clusters,
by comparing the expected number of matches to the ob-
served number of matches [7]. The ARI is bounded between
0 and 1. An ARI of 1 means that all instances are correctly
clustered. We use the ARI implementation provided with the
Weka system [21].

In the experimental results, clustering performance is always
shown as a function of the number of instances moved. Both
the layout and the cluster assignments use a random initial-
ization step, so for each experiment, we show the average
performance over 20 runs.

Data Sets
We used five data sets to test our hypotheses: two synthetic
data sets (Circles and Overlapping Circles), the Iris data set
from the UC Irvine Machine Learning Repository [15], and
two different data sets involving amino acid information, re-
ferred to as Amino Acid Indices and Amino Acid. The amino
acid data sets include relational edges already, as explained
later. For the synthetic and Iris data sets, we tested three
methods for edge generation, resulting in three versions of
each data set: one with no edges, one with edges generated
by nearest-neighbor comparisons, and another version with
edges generated probabilistically.

Nearest-neighbor edge generation creates an edge between
each instance and that instance’s nearest neighbor (using Eu-
clidean distance in the attribute space). For data sets whose
cluster membership is strongly related to the instances’ dis-
tribution in Euclidean attribute space, this will result in edges
that are well correlated with cluster membership. Nearest-
neighbor edge generation results in a number of edges equal
to or less than the number of instances (since one edge is
created for each instance, but some pairs of instances may be
each others’ nearest neighbor, so only a single edge is added
for the pair).

Probabilistical edge generation uses knowledge of shared
membership in the true clusters to generate the edges. Specif-
ically, for each pair of instances, if the instances belong to
the same cluster, then an edge is created between them with
probability 0.2. If the instances do not belong to the same
group, than we an edge is created between them with prob-
ability 0.05. This process results in a denser graph than
nearest-neighbor edge generation: the expected number of
edges is O(N2

k
), where N is the number of nodes and k is

the number of clusters. The actual expected number of edges
depends on the distribution of nodes among the clusters. For
k equal-sized clusters, the expected number of edges is ap-

5

Figure 6: 2D view of the Overlapping Circles data set.

proximately N2

8k
.

Circles The synthetic data sets are simple low-dimensional
clusters that are included as benchmarks for the different ap-
proaches.

The synthetic Circles data set includes 120 instances in two
distinct clusters. These clusters are generated by positioning
circles of radius 50 at [50,50] and [150,150] on the (x, y)
plane. Fifty points are randomly selected from inside each
circle, and assigned to the corresponding cluster. Twenty ad-
ditional “outlier” instances are generated by randomly sam-
pling betweeen the bounding circles. THese outliers are then
assigned to the nearest cluster. The two attributes for each
instance are just the (x, y) positions.

Because these clusters do not overlap and are well separated,
in the nearest-neighbor version of this data set, there are no
edges between instances from different cluster origins. In
other words, if two points have an edge between them, they
are in the same cluster. In the probabilistic-edge version of
the data, there are more edges, some of which join instances
of different clusters.

Overlapping Circles The Overlapping Circles data set in-
cludes 100 instances in four overlapping clusters. This data
is generated by creating random points from a uniform dis-
tribution within the radius of four circles—corresponding to
the four clusters—whose centers lie on another circle’s ra-
dius at each 45-degree mark. As shown in Figure 6, the four
clusters overlap each other. Therefore, some of the instances’
nearest neighbors in Euclidean space can be from a different
cluster. In this data set, both the nearest-neighbor and the
probabilistic edges sometimes connect instances from differ-
ent clusters.

Iris The Iris data set is a widely used classification database
from the UC Irvine Machine Learning Repository [15] The

original data set consists of 150 instances; we selected 99 of
these instances to create our data set by choosing 33 instances
randomly from each cluster. Each instance is described by
four numeric attributes (sepal length and width, petal length
and width). The three clusters correspond to the three classes
provided with the original data set (three different species of
irises: Iris Setosa, Iris Versicolour, and Iris Virginica). This
data set is known to be a difficult one for most clustering
algorithms, because two of the classes are linearly separable
from each other, but the third is not.

Amino Acid Indices The amino acid data set is a subset of
the AAIndex database [11, 9]. Our data set is based on Ver-
sion 6.0 of the AAIndex database, which includes 494 in-
dices, each of which measures a chemical property of amino
acids. Each instance in the AAIndex database has twenty at-
tributes, corresponding to the values of this index for each
of the twenty amino acids used in the standard genetic code.
Tomii and Kanehisa [20] identified six clusters of indices in
the original database: A (measures of alpha and turn propen-
sities), B (beta propensities), C (composition), H (hydropho-
bicity), P (physiochemical properties), and O (other). We
use 100 of these indices, selected randomly from the A and
H classes; the A/H classification is also used as the target
clustering.

The edges in this data set were determined by measuring the
correlations between the instances, then reducing the edges
to a minimum spanning tree.

Amino Acid In this data set, the attributes and instances are
inverted from the Amino Acid Index data set. The Amino
Acid data set includes twenty instances—one for each amino
acid—whose attributes are the amino acid’s chemical prop-
erties. Twenty-five of the 100 indices from the Amino Acid
data set are used as attributes. We first removed binary in-
dices, which do not yield good clustering performance. Since
many of the indices are minor variations of the same basic
measurement, we then asked a domain expert to select 25
indices that measured relatively “orthogonal” (uncorrelated)
properties.

Edges were added to the data set based on three properties of
amino acids: acidic side chains, basic side chains, and cyclic
hydrocarbons. Edges are placed between pairs of instances
that share one or more of these properties.

The target clustering has three clusters, also manually identi-
fied by our domain expert: polar, non-polar, and both. Polar
amino acids show asymmetrical electron charge on the amino
acid side chain. Non-polar amino acids show symmetrical
electron charge. Amino acids that have long side chains with
both polar and non-polar regions are grouped into the “both”
cluster.

RESULTS AND DISCUSSION
Overall, our experimental results support our claim—that In-
teractive Visual Clustering provides improved clustering per-
formance, compared to the alternative approaches we tested.
However, the Amino Acid Index data set does not yield the
expected results, highlighting some of the open challenges.

6

Figure 7: Experimental results on the Circles data set.

Figure 8: Effect of different types of edges on the ex-
perimental results for the Circles data set.

Circles As can be seen in Figure 7, the results on this data
set are as predicted. Manually moving the instances shows
the slowest improvement as a function of the number of in-
stances moved (the lowest dashed line). The Layout Baseline
(middle dashed line) shows significant improvement over the
Manual Baseline. Adding the farthest-first heuristic provides
yet more improvement (middle solid line). IVC performs the
best; however, the clustering baseline yields nearly identical
performance to IVC. We conclude that for this data set, when
using clustering, the farthest-first heuristic does not provide
any additional benefit. This is not surprising, since the in-
stances are so well separated, making this a fairly easy clus-
tering problem.

In this data set, we are also interested in understanding the
effect of edge generation on performance (Figure 8). When
no clustering is used, having edges increases the speed of
convergence to the correct clustering. This can be seen in
the middle, light-colored lines in the graph: The “No edges”
version of the data set results in the worst performance, with

Figure 9: Experimental results on the Overlapping Cir-
cles data set.

some improvement for nearest-neighbor edges, and still more
improvement for probabilistic edges.

Probabilistic edges most likely outperform nearest-neighbor
edges on this data set simply because there are more edges.
As a result, more instances are pulled towards a cluster when
the user moves a single instance. However, when clustering
is used (upper, thicker lines), the data sets with no edges or
with nearest-neighbor edges perform better than the data set
with probabilistic edges. The probabilistic edges on this data
set contain edges between instances that do not belong to the
same cluster, so the edges are only partially correlated with
cluster membership. As a result, the probabilistic edges may
pull some instances into the incorrect cluster. By contrast,
the nearest-neighbor edges for this data set only connect in-
stances that are in the same cluster.

Overlapping Circles Figure 9 shows the experimental re-
sults for the Overlapping Circles data set. Again, the meth-
ods perform as expected, with Interactive Visual Clustering
outperforming the other methods. In this case, IVC does pro-
vide a noticeable improvement beyond the Clustering Base-
line, indicating that the farthest-first heuristic is helpful in
identifying important instances for repairing the clustering.

As with the Circles data set, clustering performance is worse
when using the probabilistic edges, which connect instances
in different clusters (Figure 10). However, for IVC, the data
set using nearest-neighbor edges actually results in slightly
worse performance than using no edges. This happens be-
cause the nearest-neighbor edges connect some instances that
are not in the same cluster. By contrast, for Layout + FF
(i.e., without clustering), using edges yields better perfor-
mance than no edges. In this case, the edges do provide some
useful—if noisy—information about cluster membership.

Iris As seen in Figure 11, the Interactive Visual Clustering
method also yields the best performance of any of the meth-
ods we tested on the Iris data set. The improvement provided
by IVC is quite noticeable in this data set: after only 10 in-
stances, with IVC, the clusters are nearly perfect, with an

7

Figure 10: Effect of different types of edges on the
experimental results for the Overlapping Circles data
set.

Figure 11: Experimental results on the Iris data set.

ARI close to 1.0. The next-best method (Clustering Base-
line) has only reached an ARI of 0.75 at this point.

As in the Overlapping Clusters data set, when using clus-
tering, probabilistic edges result in worse performance than
nearest-neighbor edges (Figure 12). Again, this is likely due
to the fact that the probabilistic set has more edges between
instances in different clusters.

Amino Acid Indices Figure 13 shows the results for the
Amino Acid Indices data set. The results on this data set
are not as predicted. Clustering does not help, and actu-
ally appears to hinder performance. Here, the best perfor-
mance is given by Layout + FF. IVC is only slightly better
than the Clustering Baseline and the Layout Baseline. IVC
also shows much more variability than the other methods: it
appears that for this data set, slight variations in the layout
(resulting in different selected nodes) yield significantly dif-
ferent clusters.

Figure 12: Effect of different types of edges on the
experimental results for the Iris data set.

Figure 13: Experimental results on the Amino Acid
Indices data set.

In investigating these results, we found that the clusters are
not well separated in Euclidean space. Since the clustering
algorithms use a Euclidean distance metric, the underlying
assumptions of the clustering method are violated. How-
ever, there is a higher statistical correlation among the at-
tribute values within clusters than is seen across clusters.
Therefore, using a different clustering method, perhaps one
based on spectral analysis [22, 16], might yield better perfor-
mance. This observation also led us to develop the alternative
(Amino Acid) data set.

Amino Acid The results for the Amino Acid data set are
shown in Figure 14. IVC outperforms the other methods, but
the Layout + FF approach is comparable. The latter method
slightly outperforms IVC when only a few nodes have been
moved, but IVC is slightly better for more nodes. These dif-
ferences, however, are not statistically significant.

Similarly, the Clustering Baseline and Layout Baseline per-

8

Figure 14: Experimental results on the Amino Acid
data set.

form about equally, both outperforming the Manual Baseline.
We conclude that the force-directed layout (taking advan-
tage of the relational structure) and the farthest-first heuristic
(identifying significant errors) help to guide the user towards
the correct clustering. However, the clustering itself does not
provide much, if any, additional benefit. Again, we see that
in this data set, the Euclidean distances between instances
not strongly related to the true clustering (although the rela-
tionship is stronger than in the Amino Acid Indices data set,
thus the slightly better performance that we see here).

RELATED WORK
Lesh et al. [12] presented an interactive clustering method
that also used force-directed layout to create the visual repre-
sentation of the data. There are a few differences in the prob-
lem and approach. First, the underlying clustering method is
purely graph-based, not attribute-based. Second, rather than
using constrained clustering, their approach uses the modi-
fied clusters produced by the user as seeds for local heuristic
search. However, their results show that similar interactive
approaches may be useful even for much larger data sets than
we have studied.

In the constrained clustering literature, there has been some
work on active (automatic) selection of constraints [2, 23, 5].
However, we are not aware of any previous work on interac-
tive methods for enabling the user to select appropriate con-
straints more effectively.

FUTURE WORK AND CONCLUSIONS
We have shown that Interactive Visual Clustering can im-
prove clustering performance by integrating force-directed
graph layout techniques with user interaction and constrained
clustering. The methods we have described here are only the
first step towards a more user-centered approach to cluster-
ing.

We are currently designing a user study to test the hypothesis
that users will be able to identify anomalous (misplaced) in-
stances in the display, and therefore converge more quickly to

the correct clustering than without the force-directed layout.
We also plan to analyze and test other models of user behav-
ior (i.e., additional instance selection and placement heuris-
tics). Other types of user feedback may prove to be use-
ful, such as annotations describing why a particular instance
was moved into a given cluster. Combining the user-guided
approach of IVC with the system-guided methods of active
constraint selection methods could result in a more mixed-
initiative paradigm, where the user and the system jointly
guide the clustering process.

The ultimate goal of our research is to design more inte-
grated, interactive clustering methods for relational data sets
than currently exist. The force-directed layout used in IVC
incorporates the relational edges into the clustering process,
but only indirectly. We are also developing relational con-
strained clustering algorithms, which cluster the data in at-
tribute space and relational space simultaneously [1].

ACKNOWLEDGEMENTS
Adam Anthony, Blaz Bulka, Donald MacGlashan, Penny
Rheingans.

REFERENCES
1. Adam Anthony and Marie desJardins. Open problems

in relational clustering. In ICML workshop on Open
Problems in Statistical Relational Learning, 2006.

2. S. Basu, A. Banerjee, and R. Mooney. Active semi-
supervision for pairwise constrained clustering. In Pro-
ceedings of the 2004 SIAM International Conference on
Data Mining, pages 333–344, April 2004.

3. Indrajit Bhattacharya and Lise Getoor. Relational clus-
tering for multi-type entity resolution. In Proceedings
of the Fourth International KDD Workshop on Multi-
Relational Mining, pages 3–12, 2005.

4. Ralf Brockenauer and Sabine Cornelsen. Drawing
clusters and hierarchies. In Michael Kaufmann and
Dorothea Wagner, editors, Drawing Graphs: Methods
and Models, pages 193–227. Springer, 2001.

5. Nicolas Cebron and Michael R. Berthold. Mining of
cell assay images using active semi-supervised cluster-
ing. In Proceedings of the ICDM 2005 Workshop on
Computational Intelligence in Data Mining, pages 63–
69, 2005.

6. P. Eades. A heuristic for graph drawing. Congressus
Numerantium, 42:149–160, 1984.

7. L. Hubert and P. Arabie. Comparing partitions. Journal
of Classification, 2:193–218, 1988.

8. A. K. Jain and R. C. Dubes. Algorithms for Clustering
Data. Prentice Hall, 1988.

9. Genome Net Japan. Aaindex: Amino acid index
database, 2006.

10. Michael Kaufmann and Dorothea Wagner, editors.
Drawing Graphs: Methods and Models. Springer,
2001.

9

11. S. Kawashima and M. Kanehisa. AAindex: Amino acid
index database. Nucleic Acids Research, 28(1):374,
2000.

12. Neal Lesh, Joe Marks, and Maurizio Patrignani. In-
teractive partitioning. In International Symposium on
Graph Drawing, pages 31–36, 2000.

13. J. B. MacQueen. Some methods for classification and
analysis of multivariate observations. In Proceedings of
the Fifth Symposium on Math, Statistics, and Probabil-
ity, volume 1, pages 281–297, 1967.

14. J. Neville, M. Adler, and D. Jensen. Clustering rela-
tional data using attribute and link information. In Pro-
ceedings of the IJCAI Text Mining and Link Analysis
Workshop, 2003.

15. D.J. Newman, S. Hettich, C.L. Blake, and C.J. Merz.
UCI repository of machine learning databases, 1998.

16. A. Ng, M. Jordan, and Y. Weiss. On spectral cluster-
ing: Analysis and an algorithm. In Advances in Neural
Information Processing Systems 14, 2001.

17. prefuse.org. Prefuse: Interactive information visualiza-
tion toolkit, 2006.

18. W. M. Rand. Objective criteria for the evaluation of
clustering methods. Journal of the American Statistical
Association, 66:846–850, 1971.

19. Benjamin Taskar, Eran Segal, and Daphne Koller. Prob-
abilistic classification and clustering in relational data.
In Bernhard Nebel, editor, Proceedings of the 17th In-
ternational Joint Conference on Artificial Intelligence
(IJCAI-01), pages 870–878, Seattle, 2001.

20. K. Tomii and M. Kanehisa. Analysis of amino acid in-
dices and mutation matrices for sequence comparison
and structure prediction of proteins. Protein Engineer-
ing, 9:27–36, 1996.

21. University of Waikato. Weka 3: Data mining with open
source machine learning software in java, 2006.

22. Yair Weiss. Segmentation using eigenvectors: A uni-
fying view. In Proceedings of the IEEE International
Conference on Computer Vision, pages 975–982, 1999.

23. Qianjun Xu, Marie desJardins, and Kiri Wagstaff. Ac-
tive constrained clustering by examining spectral eigen-
vectors. In Proceedings of Discovery Science 2005,
2005.

24. Xiaoxin Yin, Jiawei Han, and Philip S. Yu. Cross-
relational clustering with user’s guidance. In Proceed-
ings of the Eleventh ACM SIGKDD International Con-
ference on Knowledge Discovery in Data, pages 344–
353, 2005.

10

